N-Bit Parallel Adder

The Full Adder is capable of adding only two single digit binary number along with a carry input. But in practical we need to add binary numbers which are much longer than just one bit. To add two n-bit binary numbers we need to use the n-bit parallel adder. It uses a number of full adders in cascade. The carry output of the previous full adder is connected to carry input of the next full adder.

4 Bit Parallel Adder

In the block diagram, A0 and B0 represent the LSB of the four bit words A and B. Hence Full Adder-0 is the lowest stage. Hence its Cin has been permanently made 0. The rest of the connections are exactly same as those of n-bit parallel adder is shown in fig. The four bit parallel adder is a very common logic circuit.

Block Diagram

N-Bit Parallel Subtractor

The subtraction can be carried out by taking the 1’s or 2’s complement of the number to be subtracted. For example we can perform the subtraction (A-B) by adding either 1’s or 2’s complement of B to A. That means we can use a binary adder to perform the binary subtraction.

4 Bit Parallel Subtractor

The number to be subtracted (B) is first passed through inverters to obtain its 1’s complement. The 4-bit adder then adds A and 2’s complement of B to produce the subtraction. S3 S2 S1 S0 represents the result of binary subtraction (A-B) and carry output Cout represents the polarity of the result. If A > B then Cout = 0 and the result of binary form (A-B) then Cout = 1 and the result is in the 2’s complement form.

Block Diagram

8 Bit Full Adder And Subtractor